Analysis of interval-censored recurrent event processes subject to resolution.
نویسندگان
چکیده
Interval-censored recurrent event data arise when the event of interest is not readily observed but the cumulative event count can be recorded at periodic assessment times. In some settings, chronic disease processes may resolve, and individuals will cease to be at risk of events at the time of disease resolution. We develop an expectation-maximization algorithm for fitting a dynamic mover-stayer model to interval-censored recurrent event data under a Markov model with a piecewise-constant baseline rate function given a latent process. The model is motivated by settings in which the event times and the resolution time of the disease process are unobserved. The likelihood and algorithm are shown to yield estimators with small empirical bias in simulation studies. Data are analyzed on the cumulative number of damaged joints in patients with psoriatic arthritis where individuals experience disease remission.
منابع مشابه
Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملConcepts and Tests for Trend in Recurrent Event Processes
Interest in the presence and nature of trend arises frequently in science, public health, technology, and many other areas. In this ar- ticle we discuss the notion of trend in the context of recurrent event processes. We discuss different frameworks within which one can inves- tigate trend and consider various ways in which trends may be manifest. Tests for trend are discussed in detail and t...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملMarginal means/rates models for multiple type recurrent event data.
Recurrent events are frequently observed in biomedical studies, and often more than one type of event is of interest. Follow-up time may be censored due to loss to follow-up or administrative censoring. We propose a class of semi-parametric marginal means/rates models, with a general relative risk form, for assessing the effect of covariates on the censored event processes of interest. We formu...
متن کاملA New Model Selection Test with Application to the Censored Data of Carbon Nanotubes Coating
Model selection of nano and micro droplet spreading can be widely used to predict and optimize of different coating processes such as ink jet printing, spray painting and plasma spraying. The idea of model selection is beginning with a set of data and rival models to choice the best one. The decision making on this set is an important question in statistical inference. Some tests and criteria a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrical journal. Biometrische Zeitschrift
دوره 57 5 شماره
صفحات -
تاریخ انتشار 2015